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The chemical structure of the interface between a nominal In2S3 buffer and a Cu�In,Ga�Se2 �CIGSe�
thin-film solar cell absorber was investigated by soft x-ray photoelectron and emission spectroscopy.
We find a heavily intermixed, complex interface structure, in which Cu diffuses into �and Na
through� the buffer layer, while the CIGSe absorber surface/interface region is partially sulfurized.
Based on our spectroscopic analysis, a comprehensive picture of the chemical interface structure is
proposed. ��

Cu�In,Ga�Se2 �CIGSe� thin-film solar cells with an
n+-ZnO/i-ZnO/CdS/CIGSe/Mo/glass device structure have
reached efficiencies of 20%.1 To replace the CdS layer by a
nontoxic, more transparent buffer, and the conventionally
used chemical bath deposition by a technique allowing in-
line processing, In2S3 layers have been deposited by physical
vapor deposition,2 sputtering,3 atomic layer deposition,4 and
spray ion layer gas reaction.5

The In2S3/CIGSe interface has been previously investi-
gated by different destructive depth-profiling techniques,2,6

high-resolution transmission electron microscopy and energy
dispersive x-ray analysis,7 and x-ray photoelectron spectros-
copy �XPS�.4,8,9 At �post-�deposition annealing temperatures
necessary for high device efficiencies �200–250 °C�, a pro-
nounced diffusion of Cu and Na from the CIGSe/Mo/glass
substrate into the nominal In2S3 buffer layer was found in
these studies. However, a complete picture of the chemical
interface structure is still missing. In this paper, we will re-
port on the characterization of the In2S3/CIGSe interface by a
combination of nondestructive techniques �XPS and soft
x-ray emission spectroscopy �XES��, deliberately varying the
probing depth. Our measurements result in a depth-resolved
picture of the interface in unprecedented detail.

In2S3/CIGSe structures were prepared at IMN on Mo/
glass substrates.10 The absorber layers were dipped in NH3
solution �1 M, room temperature, 1 min� prior to the In2S3
buffer layer deposition by thermal coevaporation of elemen-
tal indium and sulfur at 200 °C substrate temperature. To
vary the In2S3 thickness, different deposition times were
used. The standard 80 nm buffer used in solar cells is pre-
pared in 10 min �called “1/1” in the following�. For refer-
ence, an In2S3 layer, different In2S3 :Cu standards, and a
CuInS2 �CIS� absorber11 were deposited on Mo/glass sub-
strates. After preparation, all samples were sealed in polyeth-
ylene bags filled with dry N2 and desiccant for transport. At

UNLV the samples were transferred into the analysis cham-
ber �base pressure �5�10−10 mbar� without air exposure.
XPS was performed using Mg K� and Al K� excitation and a
Specs PHOIBOS 150 MCD electron analyzer �calibrated ac-
cording to Ref. 12�. Subsequently, XES was performed at the
ALS using the soft x-ray fluorescence endstation of Beam-
line 8.0.

XPS survey spectra �not shown� show all expected ab-
sorber photoemission lines, Na-related peaks, and only minor
spectral contributions of C- and O-containing surface con-
taminants. The former is due to the well-known diffusion of
Na from the soda-lime glass substrate through the Mo and
CIGSe layers,13 the latter indicates an IMN-to-UNLV sample
transfer with minimal sample contamination. Upon In2S3
deposition, S-related peaks can also be observed. Further-
more, the intensity of all absorber-related lines �except In�
decreases. However, we find significant differences in the
attenuation behavior of the different CIGSe-related peaks.
We have thus quantified the corresponding photoemission
lines by a simultaneous fit of the spectra of all samples, using
Voigt profiles and a linear background. For spin-orbit dou-
blets, the respective, Gaussian and Lorentzian widths were
coupled for each component and for all samples, and the
intensity ratio was fixed according to the �2j+1� multiplicity.
Figure 1�a� shows the intensity evolution of the different
photoemission lines upon In2S3 deposition, normalized to the
corresponding peak intensities of the bare �i.e., uncovered
but NH3-etched� CIGSe absorber and the 1/1-In2S3/CIGSe
sample, respectively. As expected, the intensities of the
S- and In-related lines increase, while those of the Ga- and
Se-related peaks decrease. In accordance with the diffusion
found in Refs. 4 and 7–9, the Cu signal only decreases to
approximately 40% of its initial intensity. The Na 1s inten-
sity first increases and then decreases again to the same level
as for the bare CIGSe surface. While the attenuation of the
Se- and Ga-related peaks indicates a complete coverage of
the absorber, the significant intensities for the Cu and Na
signals point to a heavily intermixed interface between the
In2S3 buffer and the absorber, in agreement with earlier
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findings8 �we will nevertheless continue to refer to the de-
posited layer as In2S3 in the following�.

The fact that the Se 3d signal decreases similarly to the
Ga 2p signal is surprising, since the inelastic mean free
path14 ��� of the corresponding Se 3d photoelectrons
��2.5 nm in pure In2S3 using Mg K� excitation� is signifi-
cantly higher than that of the Ga 2p photoelectrons
��0.5 nm�. We have computed the corresponding effective
In2S3 thickness �d�, assuming homogeneous and conformal
absorber coverage, using I= I0�exp�−d /��, where I �I0� is
the �un�attenuated signal intensity. Figure 1�b� shows the dif-
ferent effective thicknesses based on the attenuation of the
Ga- and Se-related peaks �average of the Mg and Al K� XPS
measurements� in comparison with the nominal thickness.
We observe that the Ga 2p-based effective thickness is
�within the error bars� in good agreement with the nominal
thickness, while the Se 3d- and Se 3s-based effective thick-
nesses are significantly increased. Only for the thickest over-
layer sample with observable Se signal �the 1/4 sample� do
we observe an agreement with the nominal thickness. This
finding could be due to a partial substitution of Se by S at the
absorber surface, combined with a subsequent selenium sub-
limation �favored by the high selenium vapor pressure� in the
first stages of In2S3 deposition. Although Se depletion of
CIGSe surfaces due to vacuum annealing has not been re-
ported for temperatures below 600 °C,15 temperatures in the
range of the used substrate temperature for our In2S3 depo-
sition are applied to re-evaporate Se caps from CIGSe.16 Fur-
thermore, similar S/Se substitution processes have been ob-
served upon CIGSe exposure to H2S atmosphere at high
temperatures17 and after low-temperature chemical bath
deposition of CdS.18

Note that the calculated layer thicknesses for the 1/64-
and 1/32-In2S3/CIGSe samples are—within the error bars—
identical. Hence, we are using the computed thickness for
thin In2S3 �instead of the nominal buffer thickness� as the
comparative parameter for the following considerations.

To quantify the XPS data, the respective peak intensities
were first corrected by the corresponding � �Ref. 14�
and photoionization cross section,19 as well as by the
electron analyzer transmission. We find that both the Cu/Na
and In/Na �S/Na� ratios measured with Al K� are
�47�2�%��16�1�%� higher than those in the more surface-
sensitive Mg K� experiments. Our findings thus point to an
accumulation of Na at all sample surfaces. The smaller

Al K� /Mg K� difference for the S/Na ratio might indicate
that also comparatively more S is present at the sample sur-
face. We tentatively explain this with a formation of S–Na
bonds at the In2S3/CIGSe sample surface. However, the pres-
ence of Na in the buffer bulk can also not be excluded.

The surface composition based on the XPS signal inten-
sities is shown in Fig. 1�c� as a function of In2S3 thickness.
Note that the S content was corrected to account for a pos-
sible Na2S formation at the surface: S�= �S�–1 /2� �Na�. For
In2S3 thicknesses above 5 nm, the Cu:In:S composition is
constant and in good agreement with a 1:5:8 stoichiometry,
as indicated. This suggests a homogeneous buffer layer com-
position, independent of buffer layer thickness. For verifica-
tion purposes, the determined In:S composition ��39:61�%�
of an In2S3 reference layer is also shown.

To enhance bulk-sensitivity, we additionally character-
ized the In2S3/CIGSe samples with the more bulk-sensitive
XES. Selected S L2,3 XES spectra are shown in Fig. 2�a�.
The spectrum of the bare �S-free� CIGSe absorber is ascribed
to the significantly less intense Se M2,3 emission �note the
magnification factor of �10�. In contrast, the S L2,3 emission
dominates the spectra even for the thinnest In2S3 layer.
Apart from the expected increase in intensity with In2S3

FIG. 1. �a� Evolution of the XPS line intensities with increasing In2S3 deposition time �error bars are in the range of symbol size�. The latter is given as
fraction of 10 min �the standard buffer deposition time�. �b� Comparison of the nominal thickness of the In2S3 buffer with values calculated from the
attenuation of different photoemission lines. �c� Surface composition of the investigated In2S3/CIGSe samples �as a function of buffer thickness� and of an
In2S3 reference, as computed from the measured XPS data. For comparison, the stoichiometry of a CuIn5S8 and In2S3 is indicated. �d� Spectral fractions of
CIS and In2S3 S L2,3 XES reference spectra in the spectra of the buffer thickness series. The corresponding fractions in the S L2,3 XES spectra of the In2S3 :Cu
standards �with nominal 9% and 18% Cu content� are shown for control. �e� Comparison of �Cu�/�In� ratios determined from XPS and XES. For the In2S3 :Cu
standard samples, the EDS ratio is shown as reference �instead of the XPS ratio�. The �Cu�/�In� ratio of a CuIn5S8 compound is also indicated.
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FIG. 2. �a� S L2,3 XES spectra of the In2S3/CIGSe samples. �b� Magnified
valence band region, together with a CIS and In2S3 reference and In2S3 :Cu
standards �with nominal Cu contents of 9% and 18%, respectively�. �c�
S L2,3 XES valence band region of the 10 nm In2S3/CIGSe sample �open
circles: raw data; gray line: fit� as superposition of In2S3 and CIS contribu-
tions. The residuum �i.e., the difference between raw data and fit� is shown
at the bottom. �d� Simplified scheme of the proposed chemical structure of
the surface region of a standard In2S3/CIGSe sample.
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thickness, the S L2,3 spectra of all In2S3/CIGSe samples look
very similar at first glance. A closer look at the valence band
features20 between 153 and 163 eV in Fig. 2�b�, however,
reveals significant differences between the samples. The
comparison with corresponding reference spectra shows that
the S L2,3 spectra for thin In2S3 layers are similar to that of
the CIS reference, while the S L2,3 spectrum of the thick
In2S3/CIGSe samples resembles that of the In2S3 :Cu stan-
dards quite well.

To quantify the XES data, we used a sum of the CIS and
In2S3 reference spectra to �least-square� fit the valence band
region, as exemplarily shown for the 10 nm In2S3/CIGSe
sample in Fig. 2�c�. The resulting spectral CIS and In2S3
fractions are shown in Fig. 1�d�. The CIS fraction is decreas-
ing and the In2S3 fraction is increasing with In2S3 layer
thickness. The quantified values confirm that the thick
In2S3/CIGSe sample is very similar to the In2S3 :Cu�18%�
standard.

Assuming that the reference spectra represent stoichio-
metric CIS and In2S3 samples and that the S L2,3 spectra
of the In2S3/CIGSe samples can exclusively be represented
as the superposition of the reference spectra, we
compute a �Cu�/�In� ratio from the CIS and In2S3
fractions: �Cu� / �In�=1 /2�S L2,3�CIS� / �1 /2�S L2,3�CIS�
+2 /3�S L2,3�In2S3��. This ratio, which by design only takes
into account Cu and In atoms bound to S, is shown in Fig.
1�e�, together with the XPS-derived �total� �Cu�/�In� ratio.
For the In2S3 :Cu standards, the �Cu�/�In� ratios measured by
energy dispersive x-ray spectroscopy21 �EDS� are also shown
and agree very well with the XES-based ratios. For the
In2S3/CIGSe samples, we find similar XPS and XES
�Cu�/�In� ratios for the thinnest and thickest but not the in-
termediate In2S3 layers. The expected similar values for the
thick samples are in agreement with a homogeneous CuIn5S8
composition throughout the entire buffer. Since S L2,3 XES
spectra only probe the chemical environment of the S atoms,
only the S-containing CuIn5S8 compound �formed on a
S-free �!� CIGSe� contributes to the respective spectra. As-
suming a homogeneous CuIn5S8 composition �i.e., no Cu
gradient�, the XES �Cu�/�In� ratio of all In2S3/CIGSe samples
should thus be similar to that of the formed CuIn5S8 buffer
compound. The observed deviation for low thicknesses is
ascribed to the substitution of Se by S in the CIGSe surface/
interface region during the first stages of the In2S3 deposi-
tion, probably forming a Cu�In,Ga��S,Se�2 interlayer. The
difference between the XPS and XES �Cu�/�In� ratios for the
intermediate In2S3 thicknesses is due to the different infor-
mation depths of the techniques �more precisely: by � of
electrons and by the much larger attenuation length of pho-
tons �here approx. 30 nm��.22 In the early stages of the In2S3
deposition, the buffer is thin enough such that the �sulfur-
ized� CIGSe side of the In2S3/CIGSe interface gives a sig-
nificant contribution to both XPS and XES spectra, leading
to high �Cu�/�In� ratios. Then, with increasing thickness, the
contribution of the In2S3/CIGSe interface region is reduced,
in particular for XPS ��Cu 2p�1 nm�. As a result, the XPS-
derived ratio rapidly decreases to the CuIn5S8 level. Due to
the larger information depth the XES spectra, in contrast,
still contain a substantial contribution from the interface re-
gion. This results in a much slower decrease in the �Cu�/�In�
ratio.

The scheme in Fig. 2�d� summarizes the findings of our
XPS and XES investigation. We suggest that, during In2S3
coevaporation on a CIGSe substrate, a CuIn5S8 buffer is
formed, the absorber surface/interface region is chemically
modified by a partial substitution of Se by S �probably re-
sulting in a Cu�In,Ga��S,Se�2 interlayer�, and Na and S ac-
cumulate at the sample surface, possibly forming NaxS is-
lands or a thin film. Acting as a Cu source for the CuIn5S8
formation, the CIGSe absorber near the interface will be Cu-
depleted. All of these chemical “modifications” are expected
to have a significant impact on the electronic structure at the
interface and thus on the overall solar cell performance.
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